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The transient natural convection of a mass of water confined within a closed cavity 
with waIl temperature decreasing at  a steady rate is considered. For situations where 
a linear density-temperature relationship can be assumed, a quasi-steady state follow- 
ing an initial transient may be reached, provided that the cooling rate applied to the 
wall is held constant long enough. Steady-state flow characteristics in the case of a 
specific geometry are functions of a single parameter, the Rayleigh number, in which 
a dimensionless temperature, based on the cooling rate, is used. For the particular 
case of water cooled through 4 "C, the temperature a t  which maximum density 
occurs, a linear variation of density with respect to temperature is no more acceptable. 
However, it can be assumed that a linear relationship between the water thermal- 
expansion coefficient and the temperature is valid in the neighbourhood of 4 "C. 
With such an assumption it is still possible to characterize the cooling process that 
follows the initial transient by a single parameter. Detailed numerical results are 
presented for the particular case of a square cavity. Existing experimental and 
numerical results for the case of a horizontal circular pipe are also discussed. 

1. Introduction 
Natural convection flows in cold water are strongly affected by the occurrence of a 

density extremum with temperature variation. Thus a t  a temperature T = 3.98 "C, 
the density of water attains a maximum value, thereafter decreasing in a nonlinear 
manner as the temperature passes this critical value. It follows from this peculiar 
behaviour that the usual linear approximation of the temperature effect on density, 
used in conventional analysis, must be replaced by another more realistic density 
equation of state. 

The convective motion of enclosed water, in the region of maximum density, has 
been studied in the past for several different geometries, boundary conditions and 
temperature gradients. For instance, Desai & Forbes (1975) and Watson (1972) have 
studied numerically the heat transfer and flow patterns in cold water in a rectangular 
enclosure with vertical boundaries maintained at different temperatures and with 
insulated horizontal boundaries. The transient behaviour of water contained in a rigid 
rectangular insulator and cooled from above to near freezing has been considered by 
Forbes & Cooper (1975). Vasseur & Robillard (1980) have studied the transient cooling 
of water, enclosed in a rectangular cavity with wall temperature maintained a t  0 "C. 
Supercooling of water contained in an enclosure subjected to convective boundary 
conditions has been investigated by Cheng, Takeuchi & Gilpin (1978) for the case of 
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FIGURE 1. Co-ordinate system and boundary conditions. 

a circular pipe and by Robillard & Vasseur (1981) for a rectangular cavity. It was 
found that the resulting flow motion is greatly influenced by the presence of a 
maximum-density effect. This latter slows down the initial circulation inside the 
cavity and subsequently reverses it. The resulting heat transfer is thus reduced in 
comparison to a standard situation without maximum-density effect. 

Theoretical analysis of transient natural convection in enclosures with an initially 
uniform fluid temperature and a linear variation of wall temperature with time has 
received little attention in the literature. Prior studies of the subject have examined 
theorebically (Quack 1970; Takeuchi & Cheng 1976) and experimentally (Deaver & 
Ecker 1970) the transient natural convection in horizont.al cylinders with constant 
cooling rate for temperature conditions such that there is no maximum-density effect. 
An experimental investigation of the cooling of water in a horizontal cylinder through 
the maximum-density point has been presented by Gilpin (1975). Results were found 
to be in agreement with Gilpin's quasi-steady-state boundary-layer model and a 
numerical study conducted by Cheng & Takeuchi (1976). 

In  this paper, the convection ofa  mass of water with boundaries cooled at a constant 
rate is considered through a dimensional analysis based on the assumption of a linear 
relationship between the thermal-expansion coeficient and the temperature. Cooling 
of the cavity is maintained long enough for the water temperature to encompass the 
3-98 "C point. Exhaustive results for the specific case of a square cavity are obtained 
by a standard numerical method and conclusions of a general character are drawn. 
The particular thermal boundary conditions of the present problem, when applied to 
a rectangular cavity, int,roduce density gradients a t  t'he four boundaries. On the one 
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hand, driving forces are generated near the vertical walls in a way comparable to more- 
standard situations where the two vertical walls are maintained at different tempera- 
tures (e.g. Patterson & Imberger 1980). On the other hand an unstable layer is formed 
a t  one of the two horizontal walls, as when a cavity is heated from below (Linthorst, 
Schinkel & Hoogendoorn 1980). 

2. Formulation of the problem 
Consider the natural convective motion of a mass of water contained in the closed, 

rectangular two-dimensional cavity illustrated schematically in figure 1. The aspect 
ratio of the half-cavity is denoted by E = h/b .  A rectangular Cartesian co-ordinat,e 
system is located in the centre of the base. Initially the water is motionless and a t  a 
uniform temperature Ti higher than 3.98 "C. At time t = 0 a uniform temperature 
T, = Ti-ct ,  where c is a constant cooling rate, is imposed on the boundaries of the 
cavity. Cooling of the system is maintained long enough so that the water maximum 
temperature inside the cavity reaches a value below 3.98 "C. 

The appropriate equations governing the resulting transient flow of fluid in this 
situation are 

au' av' 
-+y= 0. 
ax' ay (4) 

Here, u' and v' are the vertical and horizontal velocity components, T is the local 
temperature of fluid, p' the pressure, g the acceleration due to gravity, and p the 
density. v, pm, C,, k and ct = k/p,C, are respectively the kinematic viscosity, density, 
heat capacity, thermal conductivity, and thermal diffusivity, all referred to the 
temperature 3.98 "C corresponding to the maximum density (Veronis 1963), the 
present approach being valid in the neighbourhood of this point,. 

u' = v' = 0, T = Ti everywhere at t' = 0; 

The initial and boundary conditions are: 

I ( u' = v' = 0, T, = Ti - ct' on solid boundaries, 

aT 
0 on the symmetry axis (y' = 0). 

for t' > 0 

Inherent in the derivation of (1)  and ( 3 )  is the usual Oberbeck-Boussinesq approxi- 
mation (Chandrashekar 1961 ; Gray & Giogini 1976). In  addition, the compression 
and viscous-dissipation terms are neglected and all fluid properties are assumed con- 
stant except for density in the buoyancy term (Booker 1976). Each of these assump- 
tions introduces certain small inaccuracies and the reference cited gives conditions 
under which these inaccuracies become significant. For the present study none is of 
major importance. 

5-2  
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According to Moore & Weiss (1973)' a parabolic-type relationship of the form 

with h = 8 x lo4 "C-2 may be used within 4 % over the range 0-8 "C. The thermal- 
expansion coefficient becomes 

Defining the following dimensionless parameters : 

a' 
Yl u'b 
b '  u=- a' 

y = -  XI 

b '  
x = -  

introducing a dimensionless stream function $ and a dimensionless vorticity w such 
that 

a$ av au 
ax 9 

= ax ---' ay '  w v = - -  u=- 
aY ' 

and using (5)-(7), one can reduce (1)-(4) to the following non-dimensional forms: 

( 9 )  

ae aue ave -+-+- = vze+ 1, 
at ax ay 

with initial and boundary conditions: 

at t = 0 u = v = w = 4 = 8 = 0 everywhere; 

u = v = $ = d = O  at x=O,E ,  y = l ,  

w = O  at y = O .  
ae 
a Y  

for t > 0 {g= v = @ = - =  

There are no boundary conditions for the vorticity, but indirectly 

For the specific case of a square cavity containing water, E = 2 and the Prandtl 
number Pr = v/a = 11.5 corresponds to 3.98 "C. The value of unity (b2cAT/a  = 1) 
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appearing on the right-hand side of the energy equation ( 1 2 )  can be regarded as a 
uniform-heat-source term. As a matter of fact, for situations where p is linearly related 
to T, the present problem is known to be equivalent to transient natural convection 
heat transfer between a fluid with uniform internal heat sources of strength per unit 
time and volume pcC, and a cavity with constant wall temperature. 

The parameter R appearing in (10) is a time-dependent Rayleigh number defined as 

where Pw is the thermal-expansion coefficient based on T,, the temperature at  the 
wall a t  a given time t .  Since Pw = Pi- 2hATt in the case of a parabolic relationship 
between p and T ,  (15) becomes 

R = Ri - R't, (16) 

where R1 is an initial Rayleigh number based on temperature Ti. R' is a parameter 
called the nonlinear Rayleigh number. It corresponds to the rate of decrease of R, and 
is defined as 

According to (lo),  nonlinear effects between density and temperature are expected 
to be small at  a given time t if the condition 

R'8 T -T ,  
IRI IT,- 3.98 "CI 
- < l  or 

is satisfied. 
In the numerical results, the dimensionless heat transfers across the top, lateral 

and bottom boundaries, denoted by &, $L and $B respectively, are of interest. $T 

is defined as 

where qLF is the heat flux per unit area averaged over the top boundary. q5T is equiva- 
lent to a Nusselt number in which the characteristic temperature difference is based 
on the cooling rate c. Similar expressions may be obtained for lateral and bottom 
boundaries. Furthermore, it may be shown that the dimensionless heat transfer 
averaged over all boundaries corresponds to the following expression : 

where 8 is the dimensionless temperature averaged over the cavity according to the 
following equation : 

- 
B is a measure of the heat energy, in excess of the wall temperature, within the cavity. 
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3. Numerical approach 
In  this study a two-dimensional alternating direction (ADI) procedure is employed 

to solve the coupled transport and energy equations (10) and (12), which are quasi- 
linear, second-order partial differential equations of the parabolic type. The compu- 
tational method involved differs slightly from that used by Mallison & de Vahl Davis 
(1973). The first and second derivatives are approximated by central differences and 
the time derivatives by a first-order forward difference. The finite-difference form 
of the equations are written in conservative form for the advective terms in order to 
preserve the conservative property (Roache 1976). 

The elliptic equation (11)  for the stream function, is solved by the method of 
successive over-relaxation (SOR). For the present problem it was found that a relaxa- 
tion factor of 1-8 was an optimum value. The iterative procedure was repeated until 
the ratio of the maximum change in stream function occurring in the field as a result 
of one approximation to the maximum value of the stream function was smaller than 
5 x lo-*. In most of the calculations presented in this paper it was observed that the 
number of iterations required decreases rapidly from 30 immediately after the start 
of the cooling to 1-2 for most other time steps. It was also found that the number of 
iterations reaches as high as 20 when the maximum-density effect appears. 

The specification of computational boundary conditions greatly affects the accuracy 
of the solution of the vorticity equation. Thus to be consistent with the accuracy of 
the scheme utilized in this study the wall vorticity was specified by a formulation 
similar to that developed by Woods (1954). Furthermore, it should be noted that, in 
conjunction with Woods’ form, a consistent formulation of the velocity field for the 
grid points nearest the wall requires the use of a three-point special form obtained by 
a cubic equation. The velocity components computed in this way extrapolate smoothly 
to the wall. 

The determination of an appropriate mesh size is related to the complex questions 
of accuracy and stability. Patterson & Imberger (1980), in their numerical treatment 
of the square cavity, use a time-length-scale approach to estimate the limits of time- 
step and mesh size for accurate spatial and temporal representation of the solution. 
They conclude that maintaining two mesh points inside the boundary layer at each 
vertical level requires an excessive number of points when R reaches lo6. For the 
present study, a maximum mesh size of 30 x 15 for the half-cavity was found to be 
an acceptable compromise between the desired accuracy of the solution and the 
required computation time. It was also verified that the vortex formation was not 
influenced by the sweep direction in the SOR solution as it does for instance in a 
bottom-heated cavity. Typical values of the dimensionless time step were 0.0002, 
0.0005 and 0.001. 

A check of the conservative properties of the algorithm was made at regular intervals 
during the computation by comparing the heat transfer $av with the rate of change of 
e according to (20). Simpson’s rule was used for numerical integration and a three- 
point finite-difference approximation for @/at.  The agreement between the results 
obtained by the two alternative relations given in (20) was found to be within 1-2 %. 

TO expedite plotting of the results, an auxiliary computer program was written to 
locate points lying on specified isotherms and streamlines by linear interpolation of 
the computed values at the grid points. As mentioned earlier, the problem under 
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consideration is symmetrical, and it was found advantageous to reproduce the flow 
and temperature fields a t  a given time on a single graph with the streamlines on the 
right half of the cavity and the isotherms on t'he left half. 

4. Results and discussion 
Equation (16) indicates that, when R' is set equal to zero, the resulting Rayleigh 

number R characterizing the present problem remains constant throughout the 
cooling process. This situation corresponds to the standard hypothesis of a linear 
relationship between density and temperature. However, if R' is given a finite value 
larger than zero, R decreases linearly with time. The resulting situation then corres- 
ponds to the cooling of a fluid having a parabolic relationship between its density and 
temperature, such as water a t  a temperature in the neighbourhood of 3.98 "C. Both 
situations will be discussed in the following sections. 

4.1. Results with R constant 

The cooling with constant R of a mass of fluid contained in tt horizontal circular pipe 
has been studied theoretically by Quack (1970) and Takeuchi & Cheng (1976) and 
experimentally by Deaver & Ecker (1970). It was found that, although the cooling 
process is a transient one, a quasi-steady state develops if the cooling rate is held 
constant long enough. This quasi-steady state, as described by Takeuchi & Cheng, is 
characterized by temperature differences between interior points and boundary that 
remain constant with time. Figure 2 (a )  gives 8, the dimensionless temperature 
averaged over the cavity, as a function of the cooling time t ,  for R = 5 x lo4 and 
3 x 105. The pure conduction case is reproduced for the purpose of comparison. For 
those three cases, a t  time t = 0, the fluid is motionless and a t  uniform temperature Ti. 
At the early stages of the cooling process, temperature gradients are set up near the 
walls. If motion is excluded, as it is the case for lRl + 0, a pure-conduction quasi- 
steady state is reached for which = 0.14. If motion is allowed, by setting R different 
from zero, driving forces introduced by density differences near the side walls generate 
convective flow, which takes the form of two counter-rotating vortices, with fluid 
moving downwardnear the side walls for R > 0. With time elapsing, a quasi-steady 
state is reached for which 8 becomes independent of time and q5av = 0.5, according 
to (20), in the case of a square cavity (E = 2). At the quasi-steady sbate, the value of 
0.14 - 8 is a measure of the convective motion inside the cavity, this difference increas- 
ing with increasing R. Thus R represents a potential of convective motion, this latter 
being attained a t  steady state. The quasi-steady-state flow and temperature fields 
corresponding to R = 5 x 104 are represented in figure 2 (b )  on the right and left half 
of the cavity respectively, the symmetry condition prevailing throughout the com- 
putation. The specific configuration of the isotherms on the left half indicates that the 
top heat transfer q5T is larger than the bottom heat transfer &. 

Figure 2 ( c )  corresponds to R = 3 x lo5, and implies a relatively high convective 
motion for which a second mode of convection, consisting of two additional rolls near 
the top boundary, is established inside the cavity. A comparable secondary motion 
has been reported by Tarunin (1968) for the case of a square cavity with wall tem- 
perature suddenly increased. Such a flow behaviour results essentially from the 
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FIGURE 2. (a)  Initial transients and ( b ,  c )  quasi-steady-state flow and 
temperature fields for R maintained constant wi th  time. 

interaction between the zone of instability located near the top boundary and the 
flow field induced by the side wall. 

Quasi-steady-state results giving 8 as a function of R correspond to the heavy line 
of figure 3 ( a ) .  This line may be obtained point by point by solving numerically the 
basic equations with R' = 0 far enough in time to obtain the quasi-steady state, the 
procedure being repeated for different R. Other steady-state characteristics are given 
by heavy lines of figures 3 ( b ,  c ) .  The diseontinuity observed on some of those lines is 
located a t  R = 8 x 1 0 4 ,  and separates the first and second mode of convection already 
mentioned. 
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FIGURE 3. Quasi-steady-state or equilibrium curves (heavy lines) and nonlinear transients (light 
lines) in the case of dimensionless temperature averaged over the cavity ( a ) ,  and dimensionless 
heat transfers across the top ( b )  and bottom (c )  boundaries. 

R X lo-’ 

Results on figure 3 are shown with R on an arithmetic scale with negative range. 
The negative range corresponds to negative pw in (15), i.e. to a situation for which 
density is decreasing with decreasing temperature, as it occurs for water below 3.98 “C. 
The flow and temperature fields at negative R are the mirror images of those a t  
corresponding positive R. ($T)E behaves as ($B)E and vice versa. Such a behaviour 
can be noticed on figures 3 (b ,  c). At R = 0, the heavy line 8E of figure 3 (a )  attains a 
maximum value of 0-14 with a sharp peak, whereas (QT)E and ($& of figures 3 ( b ,  c)  
take the value 0-5 with maximum slope. Thus extrema for 8 and the derivatives of 
$T and $B are seen to occur a t  R = 0. 

Quasi-steady-state characteristics are also given on figure 4 with a logarithmic 
scale for R in order to cover the wide range involved in the numerical solution. Positive 
and negative ranges of R are superposed. As a consequence, figure 4 (c) shows two heavy 
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lines, with the top one corresponding to  positive R and the bottom one to  negative R. 
The converse is true for figure 4 ( d ) .  

4.2. Results with R decreasing linearly &th time 
When R decreases with time at  a constant rate R', the initial transient is followed by 
a nonlinear transient', as illustrated in figure 5 .  I n  this figure, the time scale of figure 
2 ( a )  is replaced by a Rayleigh scale, which corresponds also t.0 a temperature scale 
witJh 3.98 "C a t  R = 0. The three dashed lines are initial bransients, wit'h the same 
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FIGURE 4. Dimensionless temperature (a)  averaged over the cavity, ( b )  at the centre of the 
cavity; and heat transfer at ( c )  the top boundary, (d )  the bottom boundary; plotted as functions 
of R. Heavg lines represent the quasi-steady-state (or equilibrium) curve, light and dotted lines 
the nonlinear transients. 

R' = 2 x lo5 but different Ri. Those lines tend asymptotically to a single curve repre- 
sented by a continuous line on figure 5.  This curve is a nonlinear transient determined 
uniquely by the single parameter R'. Nonlinear transients exist for other physical 
quantities such as Oc,  heat transfers a t  boundaries or stream functions. Once relieved 
of the initial transients, they form all together the essential features of the cooling 
through a maximum density. 

It is possible to obtain the nonlinear transients to their full extent by initiating the 
cooling process a t  a value Ri such that nonlinear effects are absent, inequality (18) 
being satisfied for all interior points, and by providing enough computer time to  
reach negative R such that (18) is again satisfied. Nonlinear transients of figures 3 
and 4 have been obtained through that approach. Among them are the nonlinear 
transients corresponding to R' = 2 x lo5 of figures 5 and 6. On figure 4, these latter 
are represented by dotted lines. The direction of the cooling process is indicated by 
arrows on figure 4. The heavy lines of figures 3 and 4 have already been described to 
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FIGURE 5. Initial (- - -) and nonlinear (--) transients for R decreasing linearly 
with time at a rate R' = 2 x 106. 

be quasi-steady states for cases where p varies linearly with T .  Here they correspond 
to equilibrium states to which the fluid system tends, with a lag proportional to the 
rate of change of R. Nonlinear transients tend to  join asymptotically the quasi-steady 
state or equilibrium curves when R'8/R becomes negligibly small. It is observed on 
figure 3, that when R has decreased sufficiently, 8, & and & will depart from the 
equilibrium curves aE, ($T)E and (q5& respectively, t'his departure occurring earlier 
for higher R'. 

4.3. The inversion process 

It may be observed on figure 3 (a )  that the peak corresponding to a given R' shows a 
more-or-less pronounced lag with respect to R = 0, t,he posibion along the abscissa 
where the peak of the equilibrium curve BE is located. It is also observed that the peak 
value is smaller for larger R'. The pure conduction value of 0.14 for the equilibrium 
curve is due to the fact that, for R' + 0, there is no more convective heat transfer a t  
R = 0. However, for finite R', convective motion is transported toward negative R, 
and thus convective motion resulting from positive R is still present when negative-R 
effects are acting to reverse the flow field. As a matter of fact, once R has become 
negative, temperature differences int'roduced near the boundaries start generating 
density gradients of opposit'e sign. An inversion process is thus initiated inside the 
cavity at the end of which the flow and temperature fields tend to become the mirror 
image of the ones a t  corresponding positive R. The higher is R', the more intense is 
the convective motion inside the cavity during the inversion process. This fact explains 
why the peak characterizing the nonlinear transient decreases with increasing R'. 
With progression of the cooling process beyond the peak value for 8, i.e. with R 
becoming more negative, the density differences introduced near the boundaries 
become more pronounced. The new counter-rotating motion set up inside the cavity 
is reinforced, and convective heat transfer is enhanced. As a consequence, B begins to 
decrease. Condition (18) is mwe and more nearly satisfied and B tends asymptotically 
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FIGURE 6. Transient streamlines and isotherm field with A0 = 0.025, for R' = 2 x 106 and 
R, = 1.47 x 106 (the dashed line, where it appears, represents the 3.98 "C isotherm). (a)  
R = 1.4 x los; ( b )  1-01 x 105; (c) - 1.24 x lo4; (d) -2.45 x lo4; (e) - 3.25 x lo4; (f) - 3.0 x lo6. 
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to the equilibrium curve. Nonlinear transients are therefore connected to the 
equilibrium curve in both positive and negative directions and this observation is 
true €or the other physical quantities such as OC or heat transfers at boundaries. 

The sequence of events taking place during the inversion process may be observed 
on the set of figures 6 (a-f ), where flow and temperature fields corresponding to a 
moderate R' are illustrated. Figure 6(a) ,  with R = 1.4 x lo5 corresponds to the initial 
transient described in 9 4.2, during which temperature differences are being set up 
inside the cavity. The value of R, involved in the present case (1.47 x lo5) is important 
enough for a second mode of convection to develop, and, consequently, two pairs of 
counter-rotating vortices are present inside the cavity (figure 6 6 )  when the initial 
transient is over (see also figure 5). The initiation of the inversion process is depicted 
by figure 6(c), in which the occurrence of a small vortex of opposite rotation near the 
bottom corner indicates the beginning of the flow reversal. With time elapsing, this 
vortex grows and displaces the original one (figure 6 d ) .  Eventually a situation is 
reached where the original circulation is completely reversed, as shown on figure 6 ( e ) .  
The new motion gradually brings the relatively warm fluid of the core region near the 
bottom boundary. With progression of the cooling process, the reversed convective 
motion is enhanced. A second mode of convection appears, with a pair of additional 
vortices near the bottom boundary, as shown on figure 6 (f ). It is also noticed on this 
last figure that the temperature field, like the flow field, has become opposite in 
character to the one existing at  positive R (compare with figure S(c) and also with 
figure 2(c)). 

4.4. Transportive property of R' toward low temperatures 
The extremum in density at 3-98 "C gives rise to a very important change in flow 
behaviour within the laminar range of the cooling process. There are, however, other 
important changes such as the passage from one mode of convection to another along 
the R axis. As mentioned in $4.1 the passage is abrupt in the case of the equilibrium 
curves with a finite jump separating the first and second modes a t  R = k 8 x lo4. For 
R' > 0, the passage from one mode to the other occurs later and is more gradual. For 
instance, it may be observed on figure 3 ( a )  that the jump occurring at R = - 0.8 x lo5 
on the 8, curve is reported approximately at  R = - 1.3 x lo5 and - 1.8 x lo5 on the 
nonlinear transients.corresponding to R' = 2 x lo5 and 5 x lo5 respect'ively. Similar 
effects concerning the passage from one mode to the other are observed for the heat- 
transfer curves of figures 3(b, c). Thus, considering the lag created by R' on the flow 
reversal at 3-98 "C and the lag also created by R' on the passage from one mode to the 
other, it may be concluded that an important property of R' is to transport toward 
negative R the features of the convection that characterize the equilibrium state. 
Moreover, if R' is important enough, the second mode occurring at  positive R will not 
disappear before the initiation ofthe inversion process at R = 0 and will interact with 
it. The sequence of flow and temperature fields of figures 7 (a-f ) illustrates a case where 
R' is important enough for the secondary motion to be present when the inversion 
process starts. All figures of this sequence, including the first one, describe the non- 
linear transient exclusively, no init,ial transient being involved. It can be noticed that 
figure 7 (f) is almost the mirror image of figure 7 (a) .  

If very large values of JRI are involved, the cooling process may start in the range 
of turbulent convection above 3.98 "C and also end up in the turbulent range below 
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FIGURE 7. Transient streamlines and isotherm field with At9 = 0.025, for R' = lo7 (the dashed 
line, where it appears, represents the 3.98 "C isotherm). (a )  R = 3.00 x lo6; (b )  - 3.15 x 106; 
(c )  - 5.16 x lo6; ( d )  - 6.16 x los; ( e )  - 8.17 x los; (f) - 3.00 x lo6. 
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FIGUBE 8.  Discrepancies due to the nonlinearity in the relationship between /3 and T, affecting 
the heat transfer averaged over all boundaries, as defined in (20). R' = 2 x 106 for both cases 
1 (continuous line) and 2 (dashed line). 

3.98 T. Here also it might be expected that turbulent leatures will be carried toward 
lower R, thus reducing the laminar range. Large R' can be conceived for which turbu- 
lence is carried with enough strength to  reach the inversion process and even to reach 
negative R where the reversed convection itself starts generating turbulence. If the 
initial transient occurs in the turbulent range, a laminar range for the nonlinear tran- 
sient will follow provided that R' is not too large, i.e. provided that enough time is 
given for viscous forces to absorb the turbulent motion of the system. The present 
numerical computation is, of course, limited to the laminar range. When large R values 
(R - lo7) are involved, oscillations develop in the numerical results, and parts of the 
curves corresponding to the occurrence of those oscillations are presented by dashed 
lines on figure 4. 

4.5. Effects of the nonlinearity in the relationship between p and T 
Each nonlinear transient of figures 3 and 4 describes adequately the behaviour of a 
mass of water cooled to a constant rate, provided that temperat.ures involved remain 
in the neighbourhood of 3.98 "C. Discrepancies will develop with increasing difference 
between Tw and 3.98 "C. In fact, owing to the nonlinearity between /3 and T, the rate 
of change of R is slightly increasing with decreasing temperature, c being maintained 

I - "  - v - - 
constant. This tendency is more-or-less pronounced a t  a particular R, depending on 
I Tw - 3.98 "C( . Strictly speaking, R' of ( 1  7 )  corresponds to the exact rate of change of 
R only when Tw = 3.98 "C. Figure 8 illustrates the kind of discrepancy to be expected. 
The heat transfer is seen to vary in (20) according to a$/?%. Two cases having the 
same R' are reproduced in figure 8. The computation of the two cases was done by 
using a fourth-order polynomial in the relationship between p and T .  Case 1 covers a 
relatively narrow temperature range above and below 3.98 "C, as indicated by its 
temperature scale. Case 2 is represented by a dashed line where it differs significantly 
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FIUTJRE 9. Dimensionless temperature at the centre of the cavity, as a function of R,  in the 
case of a horizontal cylinder filled with water and cooled at a constant cooling rate (only non- 
linear transients are represented; no available data were found in existing literature from which 
an equilibrium curve could be derived). --, experimental results (Gilpin 1975) ; - - -, numerical 
results (Cheng & Takeuchi 1976). Radii b and cooling rates c are as follows: A,, b = 6.8 cm, 
c = 0.6 "C/h;- A,, 6.8 cm, 3.8 "C/h; b,, 3.75 cm, 20.3 "C/h; C,, 1.3 cm, 5.5 "C/h; G,, 1.3 cm, 
40-0 "C/h. 

from case 1.  The kind of discrepancy observed between the two cases provides an 
indication on the validity and the limits of the parabolic approach on which the present 
dimensional analysis is based. 

4.6. Comparison with existing experimental data 

In Gilpin's (1975) experiments on the cooling of a horizontal circular cylinder filled 
with water, the temperature at the centre was recorded as a function of time for 
various diameters and cooling rates. Those experimental results, transformed by the 
application of the present dimensional analysis, are shown on figure 9. It is observed 
that the trend of figure 4 ( b )  is reproduced qualitatively. Numerical results obtained 
by Cheng & Takeuchi (1976) for the same type of problem have also been transformed 
and reproduced on figure 9. Those last curves are incomplete and not entirely relieved 
of the initial transients. Nevertheless their trend and ordering shows relatively good 
agreement with the previous ones. 

5. Conclusions 
The natural convection taking place in a mass of water near 3-98 "C with boundaries 

subjected to a constant cooling rate has been investigated through a dimensional 
analysis based on a parabolic relationship between density and temperature. Although 
most graphics presented in this article concern specific numerical method and geometry 
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(square cavity), general conclusions may be established with application to any geo- 
metry and to experimental as well as theoretical studies on the subject. I n  particular 
the following statements can be made. 

(1) When density is linearly related to  temperature, a quasi-steady-state regime 
may be reached from initial conditions for which the fluid is at rest and a t  uniform 
temperature. The transient solution is characterized by a developing regime during 
which motion is set up inside the cavity. At sufficiently large time, velocities, flow 
patterns and temperature differences between the fluid and the wall become constant 
with time, indicating that the quasi-steady state is reached. 

(2) The presence of a maximum density, as is the case for water a t  3-98 "C, implies 
a decrease followed by a reversal and finally an increase of the convective motion 
inside the cavity. 

(3) When a maximum density is involved in the cooling process, nonlinear transients 
replace the quasi-steady-state results. Those nonlinear transients, relieved of the 
initial ones, are the essential features of the cooling process and are uniquely determined 
by a single parameter called the nonlinear Rayleigh number. The set of nonlinear 
transients obtained for different values of the nonlinear Rayleigh number forms an 
exhaustive solution for a given geometry. 
(4) Quasi-steady-state results obtained when the density is linearly related to  the 

temperature correspond to  equilibrium curves to  which nonlinear transients tend 
asymptotically when the difference 12'- 3.98 "Ci is increased. 

( 5 )  An import,ant effect of the nonlinear Rayleigh number is to transport toward 
low temperatures the features of convection characterizing the equilibrium curves. 
A lag is so created between the nonlinear transient and the corresponding equilibrium 
curve, the importance of this lag being directly related to  the value of the nonlinear 
Rayleigh number. 
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